absorbance, A, is represented by the equation:
A = log T = log (1/T)
where T is the transmittance of the sample. Absorbance is also frequently given as:
A = log (1/R)
where R is the reflectance of the sample.
background spectrum is used for generating a sample spectrum with minimal contributions from instrument response. It is also referred to as a reference spectrum or background reference. The ratio of the sample spectrum to the background spectrum produces a transmittance or reflectance spectrum dominated by NIR spectral response associated with the sample. In reflection measurements, a highly reflective diffuse standard reference material is for the measurement of the background spectrum. For transmission measurement, the background spectrum may be measured with no sample present in the spectrometer or using a cell with the solvent blank or a cell filled with appropriate reference material.
calibration model is a mathematical expression to relate the response from an analytical instrument to the properties of samples.
diffuse reflectance is the ratio of the spectrum of radiated light penetrating the sample surface, interacting with the sample, passing back through the sample's surface, and reaching the detector to the background spectrum. This is the component of the overall reflectance that produces the absorption spectrum of the sample.
fiber-optic probes consist of two components: optical fibers that may vary in length and in the number of fibers and a terminus, which contains specially designed optics for examination of the sample matrix.
installation qualification is the documented collection of activities necessary to establish that an instrument is delivered as designed and specified, is properly installed in the selected environment, and that this environment is suitable for the instrument's intended purpose.
instrument bandwidth or resoluton is a measure of the ability of a spectrometer to separate radiation of similar wavelengths.
multiple linear regression is a calibration algorithm to relate the response from an analytical instrument to the properties of samples. The distinguishing feature of this algorithm is the use of a limited number of independent variables. Linear-least-squares calculations are performed to establish a relationship between these independent variables and the properties of the samples.
operational qualification is the process by which it is demonstrated and documented that an instrument performs according to specifications and that it can perform the intended task. This process is required following any significant change such as instrument installation, relocation, or major repair.
overall reflectance is the sum of diffuse and specular reflectance.
partial least squares (pls) is a calibration algorithm to relate instrument responses to the properties of samples. The distinguishing feature of this algorithm is that data concerning the properties of the samples for calibration are used in the calculation of the factors to describe instrument responses.
performance qualification is the process of using one or more well-characterized and stable reference materials to verify consistent instrument performance. Performance qualification may employ the same or different standards for different performance characteristics.
photometric linearity, also referred to as photometric verification, is the process of verifying the response of the photometric scale of an instrument.
principal component regression (pcr) is a calibration algorithm to relate the response from an analytical instrument to the properties of samples. This algorithm, which expresses a set of independent variables as a linear combination of factors, is a method of relating these factors to the properties of the samples for which the independent variables were obtained.
pseudo-absorbance, A, is represented by the equation:
A = log R = log (1/R)
where R is the diffuse reflectance of the sample.
reference spectrumSee Background Spectrum.
reflectance is described by the equation:
R = I/IR
in which I is the intensity of radiation reflected from the surface of the sample and IR is the intensity of radiation reflected from a background reference material and its incorporated losses due to solvent absorption, refraction, and scattering.
root-mean-square (rms) noise is calculated by the equation:
in which Ai is the absorbance for each data point; A is the mean absorbance over the spectral segment; and N is the number of points per segment.
spectral reference library is a collection of spectra of known materials for comparison with unknown materials. The term is commonly used in connection with qualitative methods of spectral analysis (e.g., identification of materials).
specular (surface) reflectance is the reflectance of the front surface of the sample.
standard error of calibration (sec) is a measure of the capability of a model to fit reference data. SEC is the standard deviation of the residuals obtained from comparing the known values for each of the calibration samples to the values that are calculated from the calibration. SEC should not be used as an assessment tool for the expected method accuracy (trueness and precision of prediction) of the predicted value of future samples. The method accuracy should generally be verified by calculating the standard error of prediction (SEP), using an independent validation set of samples. An accepted method is to mark a part of the calibration set as the validation set. This set is not fully independent but can be used as an alternative for the determination of the accuracy.
standard error of cross-validation (SECV) is the standard deviation calculated using the leave-one-out method. In this method, one calibration sample is omitted from the calibration, and the difference is found between the value for this sample calculated from its reference value and the value obtained from the calibration calculated from all the other samples in the set. This process is repeated for all samples in the set, and the SECV is the standard deviation of the differences calculated for all the calibration samples. This procedure can also be performed with a group of samples. Instead of leaving the sample out, a group of samples is left out. The SECV is a measure of the model accuracy that one can expect when measuring future samples if not enough samples are available for the SEP to be calculated from a completely independent validation set.
standard error of the laboratory (sel) is a calculation based on repeated readings of one or more samples to estimate the precision and/or accuracy of the reference laboratory method, depending on how the data were collected.
standard error of prediction (sep) is a measure of model accuracy of an analytical method based on applying a given calibration model to the spectral data from a set of samples different from but similar to those used to calculate the calibration model. SEP is the standard deviation of the residuals obtained from comparing the values from the reference laboratory to those from the method under test for the specified samples. SEP provides a measure of the model accuracy expected when one measures future samples.
surface reflectance, also known as specular reflection, is that portion of the radiation not interacting with the sample but simply reflecting back from the sample surface layer (sampleair interface).
transflection is a transmittance measurement technique in which the radiation traverses the sample twice. The second time occurs after the radiation is reflected from a surface behind the sample.
transmittance is represented by the equation:
T = I/I0 or T = 10A
in which I is the intensity of the radiation transmitted through the sample; I0 is the intensity of the radiant energy incident on the sample and includes losses due to solvent absorption, refraction, and scattering; and A is the absorbance.